Virtual Reality Companies

The global AR and VR industry is expected to grow to $209.2 billion by 2022. If you want to be part of this ever-growing market, refer to our table of virtual reality companies below and hire the best one for your needs. Right below the table, you can gain insight into the criteria we followed when curating the list.

Filters
Comapny Size

Company Size

Freelancer

2-9

10-24

25-49

50-99

100-249

250+

Undisclosed

Hourly Rate

Hourly Rate

$0-$24

$25-$49

$50-$99

$100-$149

$150-$199

$200+

Undisclosed

Min. Project Size

Min. Project Size

Undisclosed

$1.000

$5.000

$10.000

$25.000

$50.000

$100.000

$500.000

4 Leading VR Companies

Varwin

Varwin is an innovative VR company offering its services to corporate clients since 2015. Our team consists of 50+ engineers, visual artists, strategists, and industry experts to offer its services independent of a client’s industry. The key advantage when partnering with Varwin is its proprietary XRMS, which empowers our clients to adapt and change the project objectives dynamically throughout the project without significant cost impacts. See profile
Service focus

AR/VR Development

VR/AR/MR Design

VR application development

Virtual Reality (VR)

Key features

$ 5,000

$ 100-149

25-49

United States, Delaware, Wilmington

Subvrsive

An innovative partner for forward-thinking brands, SubVRsive has deep roots in virtual and augmented reality. Its team has used its expertise in emerging technologies to help some of the world’s leading enterprises achieve a positive ROI. See profile
Service focus

AR/VR Development

Video Production

Broadcast Video

Key features

$ 5,000

Undisclosed

25-49

United States, Texas, Austin

Mutual Mobile

Mutual Mobile acts as developer, product builder, service provider, design studio, emerging tech consultancy, and strategic innovation partner. Among the most innovative VR companies in the USA, it builds solutions that change how people live, work, and play. See profile
Service focus

Mobile App Development

Web Development

UI/UX Design

Key features

$ 100,000

$ 150-199

100-249

United States, Texas, Austin

EON Reality

With its core team based in South Korea, EON Reality’s network of specialists places it among the leading international virtual reality technology companies. Since 1999, it’s been delivering state-of-the-art products that drive engagement and meet clients’ strategic goals. See profile
Service focus

AR/VR Development

Mobile App Development

Key features

$ 10,000

$ 100-149

250+

United States, California, Irvine

How We Rank the Top Virtual Reality Companies

We believe in subjecting the companies we rank to a stringent set of criteria based on a vast set of factors related to the companies’ experience and offered services. Here’s how we go about assessing the capabilities of the companies on our list:

Website Visit

We begin with this step because any software development company’s website is a great primary resource for understanding its abilities and specialties. Here are the main points we try to gauge at this stage:

  • We check the range of services the virtual reality firms claim to offer.
  • We verify the diversity and depth of the work done by the companies based on their portfolios.
  • And we evaluate the responses from the companies’ past clients based on their testimonials.

A website visit also gives us the chance to conduct a hands-on test of a company’s VR solutions. As far as possible, we try to download the apps or visit the websites and play around to check if these solutions meet the expected requirements.

Feedback on Review Platforms

We don’t just rely on the testimonials found on these companies’ websites. For a more objective perspective on each company’s work, we visit third-party review sites like Clutch and Glassdoor. While some reviews of these virtual reality development companies can contain a few negative points, we don’t use that to remove a company from consideration. However, these points help us understand the limitations of the company’s services and assist us in our overall rankings.

What Makes a Good VR Experience?

So what exactly are we looking for? It’s vital that the VR solutions provided by these companies meet certain requirements. The following covers the main aspects we want these solutions to score highly in:

Complete Motion Control

When capable VR technology companies design a virtual experience, the movement in the virtual world should reflect every movement the user makes in the real world. If a user’s movement and their perception of the world don’t align, it results in what is known as simulator sickness, which can be a huge turn-off. Conversely, control should never be wrested away from the user. There should be no movement within the virtual world without the user triggering that movement.

No VR Sickness

VR sickness can be triggered by a lousy transition from reality to the virtual world due to the following:

  • VR production companies should know that extreme or too-low saturation and contrast can tire users’ eyes.
  • A dramatic transition to black also makes it difficult for the eyes to adjust.
  • Overuse of bright colors and white exhausts the eyes.
  • Inconsistent acceleration, which is caused when there’s a difference between what the eyes perceive and what the inner ear detects, can be uncomfortable.
  • Stationary images that convey movement, like stripes and fine textures, may tire users’ eyes.
  • Flashing lights can be stressful for the eyes after prolonged exposure.
Sense of Safety and Control 

The VR design should support the user’s ability to move safely in the physical world while they’re in the virtual world. Ideally, there should be some sort of boundary feedback — visual, audible, haptic, etc. — before the user gets close to any boundary. 

Good virtual reality software companies incorporate clear descriptions into their products indicating what the experience brings, so there are no unpleasant surprises. If there are any, the user should feel able to minimize them.

A Truly Immersive Experience 

The VR experience doesn’t need to be realistic, but it has to be consistent. Additionally, it should satisfy the following criteria:

  • There should be proper depth and dimension in terms of relative size, atmospheric perspective, linear perspective, shading, textural gradient, motion parallax, and occlusion.
  • There must be binaural audio, meaning sound comes from the direction of the object that’s supposed to be making it in the virtual world.
  • Best VR companies make avatars that match the experience and follow what the user’s presence is actually doing. The avatar should be disengaged from the user in unpleasant situations — to prevent a body-ownership illusion — but have aligned physical and virtual movements to prevent the brain from remapping its interaction with real objects.
The Ability to Customize the Experience 

This ties in with giving the user enough control to modify elements that will improve their personal VR experience. Additionally, this function should be possible without having to quit the experience.

Clear and Specific Instructions 

Smooth onboarding is another critical aspect of VR. One way to ensure this is by making it easy for the user to understand how to use the controller hardware, as well as any specialized actions and gestures. The best VR companies will demonstrate these instead of explaining them in words, making the process easier to absorb.

Comfortable Interactions and a Smooth, Unintrusive UI 

The virtual world that a user moves in is much more vast compared to their space in the real world. This basic difference shouldn’t be a barrier, however. Interactions with the virtual world should also be pleasant in terms of the distance and angle of objects, with simple actions and controls that are easy to remember. The user’s tools should be accessible but not distracting.

Evaluation of Services

If the company’s VR products satisfy the criteria mentioned above, we then move on to the next critical step in our evaluation of the top virtual reality companies.

Unlike AR companies that deal with adding digital elements to real surroundings, VR companies create an entirely new world. Here, we make an in-depth assessment of the range of services offered by each company and the quality of their execution.

Here, we make an in-depth assessment of the range of services offered by each company and the quality of their execution.

Types of VR

If you’re ready to deploy the powers of VR technology to enhance your business, you should know the various kinds of virtual reality technologies available today. Using the right kind of VR ensures that your hard-earned resources are invested in a product that truly satisfies your needs. The top VR companies will have experience with some of the following types of VR:

Non-immersive

Here, only a subset of the user’s senses is stimulated, allowing for peripheral awareness of reality outside the VR simulation. A user enters the 3D virtual environment through a portal utilizing standard high-resolution monitors backed by the processing power typically found in conventional desktop workstations.

Through the Window 

This can be considered a type of non-immersive simulation — the user sees the 3D world through the “window” of the computer screen and navigates through space with a control device such as a mouse. Common examples would include the tools designed by VR companies for training in areas like surgery and architecture.

Mirror World 

This is another type of non-immersive simulation, but instead of first-person systems, it provides a second-person experience. This means the viewer stands outside the imaginary world but communicates with characters or objects inside it.

Mirror world systems use a video camera as an input device. Users see their images superimposed on or merged with a virtual world on a large video monitor or projected image. Using a digitizer, the computer processes the user’s image to extract features such as their position, movements, or the number of fingers raised.

Semi-Immersive 

Here, the user is partly immersed in a virtual environment (for example, VR companies that work with flight simulators would use this). These are powered by high-performance graphical computing systems, which are often then coupled with large-screen projector systems or multiple television projection systems to stimulate the user’s visuals properly.

Fully Immersive 

In a fully immersive simulation, hardware such as head-mounted displays and motion detecting devices are used to stimulate nearly all of a user’s senses. Fully immersive simulations provide realistic user experiences by delivering a wide field of view, high resolution, increased update rates (also called refresh rates), and high levels of contrast into a user’s head-mounted display (HMD).

Telepresence/Teleoperation 

Telepresence refers to the feeling of being in a location other than where you actually are. Virtual reality companies might develop this type of VR to help you control a robot or another device from a distance. For example, if there’s a fire in your office and you need to save important files, you can use this VR to do that for you. Additionally, it can help you do 2D meetings with your clients or promote your products to customers with great 2D visual advertisements.

Mixed and Augmented Reality 

Mixed reality is a hybrid of reality and virtual reality, which also encompasses augmented reality via immersive technology. MR, like AR, overlays virtual objects in the real-world environment. The key difference between the two concepts is that MR also anchors virtual objects to real-world objects allowing the user to interact with combined virtual/real objects. Examples could be a chef wearing glasses that show the temperatures, tastes, and aromas in the kitchen or people attending events remotely via a simulation of the real environment.   

These are just a few of the common types of VR, with some elements that might appear to overlap. Given that VR technology is undergoing rapid changes, there are new possibilities that may not fall into any of these categories.

Industry Focus

As described above, different types of VR find use in different industries. Along with examining whether the teams on our list of virtual reality companies can work with different types of VR to deliver the best services, we also check if there are any specific industries or niches they specialize in. We’re looking for both breadth and depth when scoring a VR company within its specialization.

VR applications can be broadly divided into two categories:

  • The first is the simulation of a real environment, like the interior of a building or the internal organs of a body, often with the purpose of training or remote access.
  • The second is the development of an imagined environment, generally produced by VR gaming companies or educational app developers.

Under these two categories, there are several areas across different industries that commonly benefit from the services of VR companies. The following are the most common examples:

  • Virtual prototyping
  • Architectural walk-through
  • Planning and maintenance
  • Concept and data visualization
  • Operations in hazardous zones or remote operations
  • Training and simulation
  • Sales and marketing
  • Entertainment and leisure
  • Enhanced realities

Design

Design is the soul of virtual reality development, and poor design can mar your final product’s performance, despite perfect technical execution. In terms of design principles, we look at the following factors:

  • Semantic and responsive gestures
  • Use of distinct signals based on reality
  • Effective application of feedback within the virtual environment
  • In-world menus
  • How well pertinent visuals are kept at the same level of depth
  • Proper text and images display
  • Use of realistic audio
  • Judicious use of avatars
  • Use of visual effects to communicate depth and space
  • How effectively body movements in the virtual world resemble those in real life
  • Proper placement of interactive elements to prevent motion sickness
Design Tools

When testing the design capabilities of VR software companies, we look at how well the company incorporates the key principles of VR design and how facile it is with the most important design tools and frameworks.

Unreal Engine 

Unreal Engine is among the main engines for virtual reality game development, an asset store, and great documentation. The graphics are debatably more advanced and realistic, and the learning curve is similar to Unity. Many of the VR demos built with UE4 are much more lifelike and smoother to navigate. It provides great performance with the conveniences of a modern editing environment. UE4 also exports to most platforms, though slightly less than Unity. Mixed reality games can also be created effortlessly using UE4.

Unity 3D

By far one of the most ubiquitous tools being used today in VR, Unity is, at its heart, a game engine. It has a direct VR mode to preview your work in an HMD — which can really boost productivity for virtual reality technology companies since the design takes place in a virtual environment. Unity development is quickly becoming the default option for VR due to its ease of use and ability to prototype VR applications quickly. With Unity, if you’re familiar with C# or JavaScript, you can get into the scripting pretty easily as well. All major HMDs are supported, and you can export your work to almost any platform imaginable, even WebGL.

3DS Max and Maya

These are Autodesk products for modeling, animation, lighting, and VFX. They don’t have VR support by default, but you can get them through pricey plugins. AutoCAD and 3DS Max are long-time standards in the architectural design industry and have some of the most precise tools in their UI. Like almost all GUIs for building 3D environments and drawings, these tend to be quite massive UIs with a lot of tools hidden behind menus, sub-menus, and toolbars.

Blender 

There’s a huge community of people devoted to this software and its use. And Blender is quickly becoming a favorite modeler for many virtual reality production companies. Its free and open-source software, written in Python, is available for Windows, Mac, and Linux. Many websites provide tutorial videos, forums, and documentation. The software’s official documentation is also quite comprehensive. Mainly for modeling, UV mapping, lighting, rigging, and animation, you can export your models to a multitude of formats that can then be used with many other tools. 

Houdini 

Houdini has become particularly popular among virtual reality companies working in the game design and VFX space because it makes teamwork and iterative design very easy. The tool uses a “node-based workflow,” which means that the entire set of actions taken during a design process gets stored inside interconnected nodes. Thus, the best practices from one process can be shared with a team working on another process effortlessly. A design can even be reshaped completely — VR developers can simply go back to a particular node and make some tweaks instead of redoing it from scratch.

SketchUp 

Google’s SketchUp is a basic modeling application with a very low learning curve that can get anyone up and running in a short amount of time. The tutorials on the website are excellent, not only teaching the software’s basics but also providing introductory lessons in basic 3D modeling concepts. After quickly learning the basics of modeling with SketchUp, you can then move onto more advanced tools like Blender if you desire. SketchUp’s great for modeling, quickly learning the lingo, and then moving onto bigger and better things—especially since there’s a free trial version available.

Other design tools commonly used by VR tech companies include Tinkercad, 3D Slash, Voxel Builder, MagicaVoxel, Autodesk 123d, Sculptris, Onshape, Fusion360, Solidworks, and Cinema 4D.

There are three major frameworks a virtual reality company typically choose from when designing:

  • Mozilla A-Frame – It’s used for Web VR and can be used on platforms such as Google Cardboard, Samsung Gear, and Oculus Rift.
  • Daydream VR – This is used for mid-range VR and works with mobile phones only.
  • Unity VR/Unreal SDK – It’s used for high-end headsets, including Oculus Rift, HTC Vive, and HoloLens (AR).

The Development Process

Beyond the skills that software developers offer, companies need to excel in certain software development kits (SDKs). The VR SDK is the core technological software engine that powers the development and creation of apps and experiences. The most prominent SDKs used by VR development companies include the following:

Google Daydream SDK

The Google Daydream SDK supports Unity and Unreal, the go-to graphics engines for creating VR content. It can support development for Android, Android NDK, and even iOS. The collection of SDKs provides APIs for all of the features VR developers expect, including input, controller support, and graphics rendering. Google has also opened up Daydream for standalone VR. Using a technology Google calls WorldSense, standalone Daydream headsets offer six-degrees-of-freedom (6DoF) head and controller tracking, as well as inside-out tracking.

Nvidia VRWorks 

The GPU company, Nvidia’s VRWorks, is a suite of APIs, libraries, and tools for virtual reality firms, software engineers, and VR hardware and headset developers. Along with claiming high visual quality and fidelity, Nvidia is also invested in leveraging VR for enterprise applications, with projects such as its Holodeck virtual collaborative environment. VRWorks supports Unreal and Unity and several SDKs geared toward visual performance, such as creating content for VR CAVES (room-scale VR projections), immersive displays, cluster solutions, and 360-degree video.

Oculus SDK/Oculus Mobile SDK

Facebook’s Oculus offers two SDKs for virtual reality developers looking to create content for its headset products: one for its PC-based Oculus Rift and then a mobile SDK for the Samsung Gear VR headset and the Oculus Go standalone headset. The Oculus PC SDK is based in C++ (for those less experienced in C++, it’s also compatible with the Unity and Unreal engines) and comes packed with development tools for creating spatialized audio. The Oculus Mobile SDK is an Android-based collection of libraries, tools, and resources for developing for Oculus’s mobile products. It also includes an API for integrating third-party engines.

OpenVR SDK

Open Source Virtual Reality (OSVR) is a software project that wants to free virtual reality app development from its hardware and software constraints and allow developers to create completely hardware-agnostic VR content. On the software front, the open-source VR landscape offers OpenVR, an SDK and API developed by Valve to support its own SteamVR runtime for the HTC Vive headset. OpenVR’s API is based in C++, but plugins allow for the integration of Unity and Unreal.

Vive Wave and SRWorks SDKs 

HTC offers an entire ecosystem for VR developers looking to create content around its Vive brand products. Vive Wave is an Android-based open platform and toolset (a version that supports Unity is also available) for mobile virtual reality software development. It enables interoperability between different headsets and VR-ready smartphones. The Vive SRWorks SDK, which is currently in early access, is aimed at developers looking to leverage the HTV Vive Pro, which boasts several enterprise-friendly features.

Expertise with one or more of these SDKs and other tools requires a development team to be comfortable with a variety of programming languages like C++ and Java. Other popular SDKs include the Qualcomm Snapdragon VR SDK and the ARM Mali VR SDK.

Hardware

There are several hardware options for VR companies to run applications on. More than the device’s price or its physical attributes, what’s important in terms of business use is whether the device’s technology works in your environment. This requires a strong understanding of the entire range of hardware options available. These devices are more commonly used by virtual reality game companies, but many have other uses, too. We check if the companies have the ability to build applications for the following devices:

Google Cardboard

Probably the cheapest quality 2VR device out there, Google Cardboard’s design is stripped down to the basics, with two specialized lenses that turn the smartphone into a VR-capable instrument. Many other companies like Irusu and Knox have used the basic design to come out with their own headsets. Its compatible OSs are Android 4.1 or higher and iOS 8.0 or higher.

Google Daydream View 

Another cheap and environmentally friendly headset from Google, Daydream has slightly better controls and more advanced configuration than Cardboard. Many VR companies will be pleased that it works with most phones released in the last few years and is compatible with Android Nougat 7.1 or higher.

HTC Vive 

Developed by HTC and Valve, Vive has an OLED display with a 2160 x 1200 px resolution and 90 Hz refresh rate. It also boasts 32 headset sensors and 360-degree motion tracking (SteamVR™ Tracking), a 110-degree field of view, intuitive controls, and HD haptic feedback. While it scores well on the overall experience, the device is a bit heavy and requires a high-end GPU.

HTC Vive Focus 

A standalone headset, this device has a 3K AMOLED display with a resolution of 2880 x 1600 pixels. The frequency of its update is 75 Hz, and the field of view is 110 degrees. HTC is aggressively pushing for virtual reality companies to use the device for enterprise applications.

Oculus Rift 

The Oculus Rift plugs into the computer via DVI and USB ports. The HMD display has a 2160 x 1200 px resolution, working at 233 million pixels per second, and has a 90 Hz refresh rate. The device is known for its ergonomic design and comfort of use, intuitive interface, and integrated audio. There’s also a fairly wide range of accessories available for our virtual reality companies to take advantage of.

Oculus Go 

A PC-free and wire-free headset from Oculus, Go is equipped with 3 DoF tracking, inside-out tracking, integrated spatial audio, and optimized 3D graphics.

Samsung Gear VR 

Another mobile headset, it is powered by Oculus and runs on Android Lollipop 5.0 or higher. Its highlights include a good field of view and a light weight. The visual experience, of course, depends on the phone being used. Its main drawback is that it’s only compatible with Samsung phones.

Other well-known devices among VR companies include Merge VR goggles, Oculus Quest, Valve Index, and Sony Playstation VR. There are also separate mixed reality devices, like the Acer Windows headset, HP Windows headset, Dell Visor, and Lenovo Explorer. Beyond headsets, there are a number of supplementary devices that help users further immerse themselves in the virtual environment. Examples include the Virtuix Omni treadmill and the Manus VR haptic gloves.

Testing

Testing for VR applications — and AR and MR applications for that matter — is different from most of the other app-testing processes because this is a relatively new space with few established guidelines. It’s also more complex than many other categories of software development because of challenges like non-standard interfaces and 3D space, motion testing, and safety concerns, not to mention the legal implications.

The top VR companies ensure that each product is thoroughly tested and runs without any glitches before it’s handed over to the client. There are some built-in features in the Unity3D platform and certain tools like AirTest and Xcode that allow for the testing of some aspects of a VR app. However, for a comprehensive test that ensures the application meets safety and usability standards, developer teams must devise their own methods.

How to Use Our Virtual Reality Companies List to Find the Best Outfit for Your Needs

  • Define your goals and needs and identify the companies on our list that match the specialties needed to fulfill those goals.
  • Go through the company’s portfolio to see if their past work indicates they can execute your project to your satisfaction.
  • If you also require expertise in design and content, make sure that the company provides those services.
  • Define your budget for the development project, and see if the company works on projects within this budget range.
  • See if the location of their headquarters or branch office suits your needs.
  • Check which virtual reality companies have worked with clients in the same industry as yours. Also, see if they’ve worked with companies that are a similar size to yours.

Things to Do Before Sealing the Deal with a Virtual Reality Production Company

  • Give the company a clear breakdown of your goals, your target audience, your intended offering, etc.
  • Understand the different virtual reality development cost elements, including any hidden costs you might discover later.
  • Clearly convey any budgetary or time constraints you may have.
  • Check if the communication and reporting style of the vendor team suits your needs. Most modern development teams now rely on an agile methodology, which ensures regular reporting and the quick identification of any project issues.
  • Know where the team working on your project is located. It’s better when they’re based in the same area as you so you can maintain contact easily, but really it depends on what you’re comfortable with.
  • Ensure that the team of the VR company is available for long-term support, technical consulting and training, and any maintenance services.

With that, we come to the end of our detailed breakdown of the methodology we followed to rank the leading virtual reality companies. With our tips on how to best utilize this list, we’re sure we’ve managed to simplify your task of zeroing in on the best partner to fulfill your VR strategy.